A kriging-based analysis of cloud liquid water content using CloudSat data - Météo-France Access content directly
Journal Articles Atmospheric Measurement Techniques Year : 2022

A kriging-based analysis of cloud liquid water content using CloudSat data

Guillaume Bourmaud
  • Function : Author
Pierre Minvielle
  • Function : Author
Jean-François Giovannelli
  • Function : Author

Abstract

Abstract. Spatiotemporal statistical learning has received increased attention in the past decade, due to spatially and temporally indexed data proliferation, especially data collected from satellite remote sensing. In the meantime, observational studies of clouds are recognized as an important step toward improving cloud representation in weather and climate models. Since 2006, the satellite CloudSat of NASA is carrying a 94 GHz cloud-profiling radar and is able to retrieve, from radar reflectivity, microphysical parameter distribution such as water or ice content. The collected data are piled up with the successive satellite orbits of nearly 2 h, leading to a large compressed database of 2 Tb (http://cloudsat.atmos.colostate.edu/, last access: 8 June 2022). These observations offer the opportunity to extend the cloud microphysical properties beyond the actual measurement locations using an interpolation and prediction algorithm. To do so, we introduce a statistical estimator based on the spatiotemporal covariance and mean of the observations known as kriging. An adequate parametric model for the covariance and the mean is chosen from an exploratory data analysis. Beforehand, it is necessary to estimate the parameters of this spatiotemporal model; this is performed in a Bayesian setting. The approach is then applied to a subset of the CloudSat dataset.
Fichier principal
Vignette du fichier
cloudsat_kriging.pdf (11.21 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

meteo-03967307 , version 1 (01-02-2023)

Identifiers

Cite

Jean-Marie Lalande, Guillaume Bourmaud, Pierre Minvielle, Jean-François Giovannelli. A kriging-based analysis of cloud liquid water content using CloudSat data. Atmospheric Measurement Techniques, 2022, 15 (15), pp.4411-4429. ⟨10.5194/amt-15-4411-2022⟩. ⟨meteo-03967307⟩

Relations

12 View
22 Download

Altmetric

Share

Gmail Facebook X LinkedIn More